A Quantum Corrected Poisson-Nernst-Planck Model for Biological Ion Channels
نویسنده
چکیده
A quantum corrected Poisson-Nernst-Planck (QCPNP) model is proposed for simulating ionic currents through biological ion channels by taking into account both classical and quantummechanical effects. A generalized Gummel algorithm is also presented for solving the model system. Compared with the experimental results of X-ray crystallography, it is shown that the quantum PNP model is more accurate than the classical model in predicting the average number of ions in the channel pore. Moreover, the electrostatic potential has been found to reach as high as 19% difference between two models around the charged vestibule which has been shown to play a significant role in the permeation of ions through ion-selective ligand-gated or voltage-activated channels. These results indicate that the QCPNP model may be considered as a more refined continuummodel that can be incorporated into a multi-scale electrophysiology modeling.
منابع مشابه
Poisson-Boltzmann-Nernst-Planck model.
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems,...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملA Poisson-nernst-planck Model for Biological Ion Channels — an Asymptotic Analysis in a 3-d Narrow Funnel
We wish to predict ionic currents that flow through narrow protein channels of biological membranes in response to applied potential and concentration differences across the channel, when some features of channel structure are known. We propose to apply singular perturbation analysis to the coupled Poisson-Nernst-Planck equations, which are the basic continuum model of ionic permeation and semi...
متن کاملDielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.
We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015